Reaktionsmechanismen

in der

für Fortgeschrittene

Themen der Vorlesung

1. Aufklärung von Reaktionsmechanismen:	1.1 thermodynamische Aspekte1.2 kinetische Untersuchungen1.3 kinetischer Isotopeneffekt1.4 lineare Freie Enthalpiebeziehungen			
2. Reaktive Zwischenstufen	2.1 Carbokationen			
	2.2 Radikale			
	2.3 Radikalionen			
	2.4 Carbene			
	2.5 Carbanionen			
3. Reaktionsmechanismen:				
IUPAC-Nomenklatur für Reaktionen				
Grenzorbitaltheorie				
neuere Aspekte der Behandlung von:				
nucleophilen Substitutionen				
aliphatischen electrophilen Substitutionen				
radikalischen Substitutionen und Additionen				
elektrophilen und nucleophilen Additionen				
pericyclischen Reaktionen (Woodward-Hoffmann-Regeln)				
Eliminierungen				

homogene Katalyse

Literatur

M.B. Smith, J. March: March's Advanced Organic Chemistry, Reactions Mechanisms and Structure,5.Auflage, Wiley, 2001 (168 DM)

R.Brückner: Reaktionsmechanismen, Stereochemie, moderne Synthesemethoden, Spektrum Akad. Verlag, 1996 (79.90 DM)

P.Sykes: Reaktionsmechanismen der Organischen Chemie, Wiley-VCH, 1988 (68.26 DM)

1. Aufklärung von Reaktionsmechanismen

 $BDE = \underline{B}indungs\underline{d}issoziations\underline{e}nergie$

Thermodynamische Aspekte: Beispiel

$$H_{3}C--CH_{3} + H_{2}C=-CH_{2} \longrightarrow H_{3}C--(CH_{2})_{2}--CH_{3}$$

$$\Delta_{f}H^{0} - 86.6 \qquad 52.3 \qquad -126.4 \quad [kJ/mol]$$

$$S^{0} \quad 230 \qquad 219 \qquad 310 \quad [J/mol K]$$

$$\Delta_{\rm r} {\rm H}^0 = -92.1 \text{ kJ/mol}$$
$$\Delta_{\rm r} {\rm S}^0 = -139 \text{ J/mol K}$$

$$\Delta_{\rm r} {\rm G}^0_{300} = -50.4 \, {\rm kJ/mol}$$

BDE $C \stackrel{\pi}{=} C$ $C \stackrel{\sigma}{-} C$ 248 343 [kJ/mol] $\Delta_r H^0 \approx -95 \text{ kJ/mol}$

1.2 Kinetische Untersuchungen

S_N1-Reaktion:

$$R - X + Y^- \rightarrow R - Y + X^-$$

zuBeginn

im Verlauf

S_N1-Reaktion

$$R-X \xrightarrow{k_1} R^+ + X^- \quad \text{langsam}$$

$$R^+ + Y^- \xrightarrow{k_2} R-Y \quad \text{schnell} \quad k_2 >> k_1$$

$$\frac{d[RY]}{dt} = k_2[R^+][Y^-]$$
(1)

$$\frac{d[R^{+}]}{dt} = k_{1}[RX] - k_{-1}[R^{+}][X^{-}] - k_{2}[R^{+}][Y^{-}] = 0 \quad (2)$$
Quasistationaritätsbedingung (Bodenstein)

$$[R^{+}] = \frac{k_{1}[RX]}{k_{-1}[X^{-}] + k_{2}[Y^{-}]} \quad \text{Konkurrenzreaktion} \quad (2a)$$

$$\frac{d[RY]}{k_{-1}} = -\frac{d[RX]}{k_{-1}} = \frac{k_{1}k_{2}[RX][Y^{-}]}{k_{-1}[X^{-}] + k_{2}[Y^{-}]} \quad (2a) \text{ in } (1)$$

dt

dt

 $k_{-1}[X^{-}] + k_{2}[Y^{-}]$

Zwei Extremfälle:

a)
$$k_{-1}[X^{-}] \ll k_{2}[Y^{-}]$$
 zu Beginn
 $\frac{d[RY]}{dt} = -\frac{d[RX]}{dt} = k_{1}[RX] \implies k_{1} = k_{exp}$
b) $k_{-1}[X^{-}] \implies k_{2}[Y^{-}]$ gegen Ende
 $d[PY] = d[PY] \implies k_{1} \in [PY][Y^{-}] \implies k_{1} = k_{exp}$

 $\frac{d[RY]}{dt} = -\frac{d[RX]}{dt} = \frac{k_1 \cdot k_2 [RX][Y^-]}{k_{-1}[X^-]} \Rightarrow \frac{k_1 \cdot k_2}{k_{-1}} = k'_{exp}$

Überstöchiometrischer Zusatz von Y⁻: Fall a)

Zusatz von X⁻ : Fall b)

Reaktionsdiagramm

Konkurrenzreaktion

$$\frac{d[RX]}{dt} = k_x[R^+][X^-]$$

$$\frac{d[RY]}{dt} = k_y[R^+][Y^-]$$

$$\frac{d[R_x]}{d[R_y]} = \frac{k_x[X^-]}{k_y[Y^-]}$$

$$\frac{k_x}{k_y} \equiv \text{Konkurrenzkonstante}$$

$$S \equiv \log\left(\frac{k_x}{k_y}\right) \quad \text{Selektivität}$$

_

Aldoladdition

Aldoladdition

$$\frac{d[Aldol]}{dt} = k_3[Aldol^{-}][EtOH]$$
(1)

$$\frac{d[Aldol^{-}]}{dt} = k_2[PhCHO][^{-}CH_2COPh] - k_3[Aldol^{-}][EtOH] = 0$$
(2)

$$[Aldol^{-}] = \frac{k_2[PhCHO][^{-}CH_2COPh]}{k_3[EtOH]}$$
(2a)

$$\frac{d[^{-}CH_2COPh]}{dt} = k_1[EtO^{-}][MeCOPh] - k_{-1}[EtOH][^{-}CH_2COPh]$$
(3a)

$$[^{-}CH_2COPh] = \frac{k_1[EtO^{-}][MeCOPh]}{k_{-1}[EtOH] + k_2[PhCHO]}$$
(3a)

Aldoladdition

$$[Aldol^{-}] = \frac{k_2[PhCHO] \cdot k_1[PhCOMe][EtO^{-}]}{k_3[EtOH](k_{-1}[EtOH] + k_2[PhCHO])}$$
(3a) in (2a)

(4)

$$\frac{d[Aldol]}{dt} = \frac{k_1 \cdot k_2 \cdot k_3 [PhCHO][PhCOMe][EtO^-][EtOH]}{k_3 [EtOH](k_{-1}[EtOH] + k_2[PhCHO])}$$

$$k_{-1}[EtOH] >> k_{2}[PhCHO]$$

$$k_{exp} = \frac{k_1 \cdot k_2}{k_{-1}[EtOH]}$$

Reaktionsdiagramm der Aldoladdition

RK

Prinzip der mikroskopischen Reversibilität

Bei einer reversiblen Reaktion verlaufen Hin- und Rückreaktion auf demselben Reaktionsweg, d.h. nach demselben Mechanismus.

Hammond-Postulat

Die Geometrie des Übergangszustandes ähnelt mehr der Seite der Reaktion (Edukt bzw. Produkt), der er bezüglich der Freien Enthalpie näher ist.

1.2 Kinetische Untersuchungen: Temperaturabhängigkeit von k

Arrhenius-Gleichung (1889) (Svante Arrhenius 1859 - 1927)

$$\log k = \log A - \frac{E_A}{2.303 RT}$$
$$k = A \cdot e^{-E_A/RT}$$

- E_A Aktivierungsenergie
- A präexponentieller Faktor, A-Faktor

Theorie des Übergangszustandes (1940)

(Henry Eyring, 1901 – 1981)

 G^0

B

RK
$$\log k = \log \frac{k_{\rm B}}{h} + \log T - \frac{\Delta G^{0\ddagger}}{2.303 \, \rm RT}$$

A

Eyring-Gleichung – nur für Elementarreaktionen gültig!

Theorie des Übergangszustandes (1940)

Für Elementarreaktionen gilt:

$$E_A = \Delta H^{0^{\pm}} + RT$$

$$\log A = \frac{\Delta S^{\ddagger 0}}{2.303 R} + \log T + \log \frac{k_B}{h}$$
 (monomolekular)

Orientierung für logA

$$\begin{array}{c|c} \Delta S^{0^{\ddagger}} & \approx 0 & >0 & <0 \\ \hline \log A & 13 & >13 & <13 \end{array}$$

$$\log \frac{K_B}{h} = 10.76$$
 $\log 300 = 2.48$ (T = 300K)

Aktivierungsparameter typischer monomolekularer Reaktionen

Aktivierungsparameter typischer bimolekularer Reaktionen

Substituenteneffekte

Bell-Evans-Polanyi-Beziehung

$E_A = k + k' \cdot \Delta_r H$

Stereoselektivität

Chem.Ber. 1994, 127, 1069-1073

Konkurrenzreaktionen

Konkurrenzreaktion

$$\log\left(\frac{k_Z}{k_E}\right) = \log\left(\frac{A_Z}{A_E}\right) - \frac{\left(E_{A,Z} - E_{A,E}\right)}{2.303 RT}$$

X

$$E_{A,Z} - E_{A,E} (kJ/mol)$$
 $\log A_Z - \log A_E$

 Me
 - 9.7
 - 0.79

 tBu
 - 16.8
 - 2.76

1.3 Primärer kinetischer Isotopeneffekt

Primärer kinetischer Isotopeneffekt

(1)
$$E_0 = \frac{1}{2}hv_s = \frac{1}{2}hc\tilde{v}$$

(2) $v_s = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$
(2) in (1) $E_0 = \frac{h}{4\pi}\sqrt{\frac{k(m_1 + m_2)}{m_1 \cdot m_2}}$

 v_{S} = Frequenz der Valenzschw. der Bindung k = Kraftkonstante der Schwingung

 $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2} \quad \text{reduzierte Masse}$

Kinetischer Isotopeneffekt - Beispiele

Kinetischer Isotopeneffekt - Beispiele

Sekundärer kinetischer Isotopeneffekt - Beispiele

Ursache für sekundären Isotopeneffekt k_H/k_D :

Umhybridisierung im TS:

$$C sp^{3} \longrightarrow sp^{2} \qquad k_{H}/k_{D} > 1$$
$$sp^{2} \longrightarrow sp^{3} \qquad k_{H}/k_{D} < 1$$

Sekundärer kinetischer Isotopeneffekt - Beispiele

Hyperkonjugation:

 $(CD_3)_3C^{\bigoplus} + (CH_3)_3CH \longrightarrow (CD_3)_3CH + (CH_3)_3C^{\bigoplus} K_{298} = 2$

1.4 Substituenteneffekte:

Lineare Freie Enthalpie-Beziehungen

Acidität:

 $\mathrm{CH}_{3}\mathrm{COOH}\ <\ \mathrm{Cl}\mathrm{CH}_{2}\mathrm{COOH}\ <\ \mathrm{Cl}_{2}\mathrm{CHCOOH}\ <\ \mathrm{Cl}_{3}\mathrm{CCOOH}$

Verseifungsgeschwindigkeit:

X-COOEt
$$\xrightarrow{+ OH^{\ominus}, H_2O}$$
 X-COO $\stackrel{\ominus}{k_x}$ + EtOH
 $k_x : X = H > Me > Et > iPr > tBu$

Man unterscheidet: - polare

- sterische
- stereoelektronische Substituenteneffekte.

L. P. Hammett (1935):

$$\begin{array}{c} & \swarrow \\ & \square \\ & \square$$

para = \sum induktive-, Feld-, mesomere Effekte meta = \sum induktive-, Feldeffekte ortho = Störung durch sterische Effekte

$$\log \frac{K_X}{K_H} \equiv \sigma_X \quad (\text{in H}_2\text{O}, 25^\circ\text{C})$$

 σ_X = Substituentenkonstante polarer Effekt von X

$$-COO^{\ominus} \sigma_X < 0$$

$$\sigma_X > 0$$

Substituentenkonstanten

Nr.	Substituent	$\sigma_{\rm m}$	σ_{p}
1	N(CH ₃) ₂	-0,21	-0,83
2	NH ₂	-0,16	-0,66
3	ОН	0,12	-0,37
4	OCH ₃	0,12	-0,27
5	CH ₃	-0,07	-0,17
6	C(CH ₃) ₃	-0,10	-0,20
7	C ₆ H ₅	0,06	-0,01
8	Н	0	0
9	F	0,34	0,06
10	Cl	0,37	0,23
11	Br	0,39	0,23
12	Ι	0,35	0,18
13	COOC ₂ H ₅	0,37	0,45
14	COCH ₃	0,38	0,50
15	CN	0,56	0,66
16	SO ₂ CH ₃	0,60	0,72
17	NO ₂	0,71	0,78
18	N(CH ₃) ₃ ⁺	0,88	0,82
Hammett - Gleichung

$$\log \frac{k_{x}}{k_{H}} = \rho \cdot \sigma_{x}$$

ρ Reaktionskonstante

für $\rho > 1$: Substituenten beeinflussen die Reaktion stärker als die Dissoziation von Benzoesäure.

Beispiel: Nucleophile Addition

 $\rho = 2.3$ (20°*C*)

- $\rho > 0$ -M, -I-Substituenten beschleunigen Reaktionen, bei der eine Erhöhung der Elektronendichte am Reaktionszentrum erfolgt.
 - nucleophiler Angriff
 - Ausbildung einer negativen Ladung

Beispiel: Nucleophile Substitution (S_N1)

 $\rho = -5.1$

- ho < 0 + M, +I-Substituenten beschleunigen Reaktionen, bei der eine Erniedrigung der Elektronendichte am Reaktionszentrum erfolgt.
 - elektrophiler Angriff
 - Ausbildung einer positiven Ladung

Beispiel: Radikalische Substitution

Hammett-Korrelation: Elektrophiler Angriff

Abhängigkeit der Reaktionsgeschwindigkeit von σ

Bildung Schiff'scher Basen

Hammett-Diagramm für die Bildung Schiff^{*}scher Basen aus substituierten Benzaldehyden (J.Chem.Educ. 48, 104 (1971))

Hammett-Korrelation: Acetolyse

benzolsulfonate in Abhängigkeit von o [J. Amer. Chem. Soc. 91, 4290 (1969)]

Hammett-Korrelation: Basenkatalysierte Verseifung

Fig. 10.17. Hammett plot for second-order rate constants of the base-induced hydrolysis of ethyl bezoates, 85 per cent aqueous ethanol, 25 °C.²¹

Mechanistische Möglichkeiten der alkalischen Esterhydrolyse

A_{Ac}2-Mechanismus

Sterische Substituenteneffekte nach R.W.Taft (1952)

R in RCOOH	E_S
Н	+1,24
Me	0
Et	-0,07
ClCH ₂	-0,24
ICH ₂	-0,37
PhCH ₂	-0,38
$Me(CH_2)_3$	-0,39
Me ₂ CHCH ₂	-1,13
Me ₃ C	-1,54
Me ₃ CCH ₂	-1,74
Ph ₂ CH	-1,76
Et ₃ C	-3,81

Korrelation der rel. Reaktionsgeschwindigkeit mit E_S

Regioselektivität S und E_S

2. Reaktive Zwischenstufen

Reaktive Zwischenstufen

Stabilisierung durch Hyperkonjugation

Hyperkonjugation: auch induktiver Effekt, Feldeffekt

Stabilisierung durch Konjugation

Stabilität:

D(R⁺H⁻) 996

Stabilisierung durch Konjugation

 $D(R^{+}H^{-})$ 840

940 1154 destabilisiert

Triphenylmethyl- und polycyclische Kationen

Di- und Tetracarbokationen

S.A. Olah et al., J. Am. Chem. Soc. 1999, 121, 9994-9998

Darstellung und Reaktionen

3) $(CH_3)_3C - H + R^+ \longrightarrow (CH_3)_3C^+ + R - H$

Darstellung und Reaktionen

stabile Lösungen von tBu⁺ in "magischer Säure";

 $SbF_5(SO_3F)$ in SO_2 (fl): sehr schwaches Nucleophil. (NMR bis $-150^{\circ}C$)

Umlagerungen

bis -140°C <u>ein</u> Signal im ¹H-NMR: sehr schnelle Wagner-Meerwein Umlagerung

Umlagerungen

transannulare Umlagerung:

Carboniumionen

1. Gasphase

$$H_3C - CH_3 + CH_5^+ - C_2H_7^+ + CH_4$$

Chemische Ionisation Allgemein: $M + CH_5^+ \longrightarrow MH^+ + CH_4$

Carboniumionen

2.2 Radikale								
		R—	н —		$R^{\bullet} + H$	[•		
R: BDE [kJ/mol] Stabilität R [•]	Me 440	Et 410	iPr 396	tBu 389				
R^1 R^2 C X				Stabili	sierung [k	J/mol]		
Me					0			
Ph < HC =	CH ₂ ≈	C≡	СН		45 - 50			
COOR < C≡	≡N <	CR' O	≈ N	10 ₂	25 - 40			
C1 < OR' <	NR' ₂ -	< SR'			10 - 40			
C	CF ₃				- 5			
N	H_3^+				- 16			

Struktur von Radikalen

Erzeugung und Reaktion von Radikalen

2. Atomabstraktion

Erzeugung und Reaktionen von Radikalen

4. Umlagerungen

Erzeugung und Reaktionen von Radikalen

- 5. Radikal-Radikalreaktionen: Rekombination Disproportionierung
- 6. Radikalkettenreaktionen

Stabile Radikale

1-Diphenylmethylen-4-trityl-2,5-cyclohexadien

http://www.cpes.sussex.ac.uk/motm/index.html

Mislow, 1986

154 pm $H_3C-CH_3 = 2 \circ CH_3$ $BDE = 376 \text{ kJ mol}^{-1}$

Stabile Radikale

Stabile Radikale

Phenole als Radikalfänger; Tocopherol

2.3 Radikalionen

2.3.1 Radikalkationen 1. $M + e^{-} \longrightarrow M^{\ddagger} + 2 e^{-}$ Elektronenstoßionisation \rightarrow Massenspektrometrie 2. In Lösung: $M + Ox \longrightarrow M^{\ddagger} + Red^{-}$ Ox: Einelektronenoxidationsmittel Anode, Co³⁺, Mn³⁺, Cu²⁺, Ce⁴⁺ u.a.

Radikalkationen

2.3.2 Radikalanionen

Radikalanionen

© Walt Disney Productions

2.4 Carbene

Arylcarbene ³HCAr

Carbenoide

Nitrene

2.4.2 Erzeugung

Stabile Carbene

1,3-Di-1-adamantyl-imidazol-2-yliden-imidazoliumchlorid

A.J. Arduengo, III und R. Krafczyk, ChiuZ 1998, 32, 6

Stabile Carbene

Hideo Tomioka et al., Nature 2001, 412, 626

Guy Bertrand et al., Science 2001, 292, 1901 - 1903

2.4.3 Reaktionen

Reaktivität: 1 |CH₂ > 1 |CHCl > 1 |CCl₂ > 1 |CBr₂ > 1 |CI₂ > Carbenoide

analog: RCHI₂, ArCHI₂

Reaktionen

<u>Umlagerung:</u> schneller 1,2 Shift

Insertion in C-H-Bindungen

$$CH_{3}CH_{2}CH_{3} \xrightarrow{+ \ ^{1}|CH_{2}} CH_{3}(CH_{2})_{2}CH_{3} + H_{3}C \xrightarrow{CH_{3}} H_{3}C$$

2.5 Carbanionen

$R - H + IB \implies R^{-} + HB$

2.5.1 Stabilisierung von Carbanionen

2. Aromatisierung

3. Hybridisierung R_3C-CH_2 $R_2C=CH$ R-C=C sp^3 sp^2 sp^2 sp pK_S 50 43 43 25 Stabilität

4. Stabilisierung durch S, P, Si in α-Position

2.5.2 Struktur

2.5.3 Reaktionen

Umlagerungen

1.2-Umlagerungen der reaktiven Zwischenstufen

3. Reaktionsmechanismen

3.1 IUPAC-System für die symbolische Darstellung von Mechanismen

IUPAC-Nomenklatur für Transformationen

Hydro-chlor-eliminierung

$$EtBr + MeO|^{\bigcirc} \longrightarrow Et - O - Me + Br|^{\bigcirc}$$

Methoxy-de-bromierung

 $CH_3CHO + Ph_3P = CH_2 \longrightarrow H_3CHC = CH_2 + Ph_3PO$ Methylen-de-oxo-bisubstitution

3.2 Grenzorbitaltheorie

Grenzorbitaltheorie

$$\Delta E_{HO,LU} = \frac{2(c_{d,HO} \cdot c_{a,LU} \cdot \beta_{ad})^2}{E_{HO,D} - E_{LU,A}}$$

$$\beta = \text{Resonanzintegral} \qquad \text{LUMO A: a} \qquad \begin{cases} \beta \\ \beta \\ \text{HOMO D: d} \end{cases} \qquad \beta_{ad}$$

c < 1 = Koeffizient des AO von d im HOMO von D bzw. von a im LUMO von A

Lit.: I. Fleming: Grenzorbitale und Reaktionen organischer Verbindungen, VCH

Grenzorbitaltheorie

Grenzorbitalwechselwirkung dominiert!

Coulomb-Term dominiert!

Nucleophile mit energiereichem HOMO - weich

- mit energiearmem HOMO hart
- Elektrophile mit energiearmem LUMO weich
 - mit energiereichem LUMO hart

Ambidente Nucleophile

Grenzorbitalterm dominiert!

Coulomb-Term dominiert!

Ambidente Nucleophile

Nucleophile Substitution

Phasentransfer-Katalyse $H_3C(CH_2)_7Cl + (NaCN)_{ag}$ $H_3C(CH_2)_7CN$ $R_4 N^+ Cl_{kat}^-$, 2h organische Phase $[R_4N^+ CN^-] + OctC1 \longrightarrow OctCN + [R_4N^+ Cl^-]$ $R_4 N^+ + CN^- + Na^+ + Cl^$ wässrige Phase

 $\frac{\text{MeN(Oct)}_{3}^{+}\text{Cl}^{-}}{\text{PhCH}_{2}\text{NEt}_{3}^{+}\text{Cl}^{-}}$

Aliquat 336 TEBA Kronenether

Nachbargruppeneffekte

Nachbargruppeneffekte

Nachbargruppeneffekte

Aliphatische elektrophile Substitution

Aliphatische elektrophile Substitution

Aliphatische elektrophile Substitution

nBuHgBr reagiert 10⁷mal langsamer.

Kinetischer Isotopeneffekt $k_H/k_D \approx 1$

 π -Komplex i.A. nicht auf der Reaktionskoordinate

Regel der Zweitsubstitution

Anwendung des Hammond-Postulats:

- Stabilität des Areniumions

Mechanismus: $A_E + D_E$

Röntgenstrukturanalyse eines Chlorareniumkations

Figure 1. ORTEP diagram showing chlorine attechment to a single carbon center in the chloroarenium cation 1-Cl⁺ from hexamethylbenzene

J.Am.Chem.Soc. 1998, 120, 13278 - 13279

Aromatische nucleophile Substitution

Aromatische nucleophile Substitution

<u>Benzin-Mechanismus: Eliminierungs-Additions-Mechanismus</u> $\underline{A}_{\underline{N}}\underline{D}_{\underline{E}}\underline{D}_{\underline{N}} + \underline{A}_{\underline{E}} + \underline{A}_{\underline{N}}$

Radikalische Substitution $S_H (A_r D_R + A_R D_r)$

$$R - H + Br_2 \rightarrow R - Br + HBr$$

Kettenfortpflanzung

$$R = K - CH_2 \quad \rho = -1.4$$

Radikalische Substitution

Nucleophile Rad•: tBu•, ROCH₂•, R₂NCH₂•, u.a. Elektrophile Rad•: Br•, Cl•, •CH₂CN, •CH₂COOMe, u.a.

	H ₃ C	-CH ₂ -COOH
Me•	1	7.8
C1•	1	0.03

Radikalische Substitution

Radikalische Substitution

Radikalische SubstitutionArH + H2O2 + FeSO4 \longrightarrow ArOHFe²⁺ + HO-OH \longrightarrow Fe³⁺ + OH⁻ + OH• Fentons Reagenz

Hydroxylierung von Aromaten

Radikalische Additionen $(A_R + A_R D_T)$

Radikalische Additionen

Elektrophile R• addieren schneller an elektronenreiche, nucleophile R• schneller an elektronenarme Doppelbindungen und umgekehrt.

Elektrophile $(A_E + A_N)$ und nucleophile $(A_N + A_E)$ Additionen

Elektrophile Additionen

Hydroborierung (H.C. Brown, 1979 Nobelpreis)

Cycloaddition - Cycloreversion

 $Z = CHO, COCH_3, COOR$ CN, NO₂, SO₂Ph, u.a.

Dien Dienophil

Diels-Alder-Reaktion —— Retro-Diels-Alder (Nobelpreis 1950)

 $C = Ph, CH = CH_2, u.a.$

Diels-Alder mit normalem Elektronenbedarf

Dienophile

Heterodienophile: $-C \equiv N$ $-C \equiv N$ $-N \equiv O$ $-C \equiv O$ u.a.

1,3-Diene

Stereochemie

D-A wird durch Lewis-Säuren beschleunigt, endo-Selektivität wird erhöht.

Mechanismus

Woodward (Nobelpreis 1965), R.Hoffmann (1985): Pericyclische Reaktionen

Orbitale der C=C-Bindung

Lit.: Ian Fleming, Grenzorbitale und Reaktionen organischer Verbindungen, VerlagChemie, 1979

Orbitale der C=C-Bindung

Die Energien der π -MOs von Ethylen und 1,3-Butadien.

Grenzorbitalwechselwirkungen

Grenzorbitalenergien

Grenzorbitalenergien und –koeffizienten für Olefine und Diene. Die Energiemittelwerte sind für die verschiedenen Klassen von Olefinen und Dienen typisch. (1 eV = 96.5 kJ = 23 kcal)

Grenzorbitaltheorie

$$\Delta E_{HO,LU} = \frac{2(c_{d,HO} \cdot c_{a,LU} \cdot \beta_{ad})^2}{E_{HO,D} - E_{LU,A}}$$

$$\beta = \text{Resonanzintegral} \qquad \text{LUMO A: a} \qquad \begin{cases} \beta \\ \beta \\ \text{HOMO D: d} \end{cases} \qquad \beta_{ad}$$

c < 1 = Koeffizient des AO von d im HOMO von D bzw. von a im LUMO von A

Lit.: I. Fleming: Grenzorbitale und Reaktionen organischer Verbindungen, VCH

Regioselektivität

Bestimmung der dominierenden Wechselwirkung
 Größe der Koeffizienten in HOMO und LUMO

Endo-Selektivität

Sekundärüberlappung

Sekundärüberlappung der Grenzorbitale in Diels-Alder-Additionen. Die gepunkteten Linien repräsentieren die bindende Überlappung, die den *endo*-Übergangszustand stabilisiert.

Katalysierte Diels-Alder-Reaktion

Grenzorbitale und gesteigerte endo-Selektivität einer Säure-katalysierten Diels-Alder-Reaktion

Cycloadditionen

1,3-Dipolare Cycloadditionen

- 1. 1,3 Dipole vom Propargyl-/Allenyl-Anion-Typ(C,N,O): 6
- 2. 1,3 Dipol vom Allyl-Anion-Typ:8

Die wichtigsten 1,3-Dipole

 $HC \equiv N - \overline{C}H_2$ Nitrilylide

$$HC \equiv N - \overline{N}H$$

Nitrilimine

 $HC \equiv N - \overline{O}$ Nitriloxide

 $H_2C = N = \overline{N}$ Diazoalkane

 \overline{O} $- \overline{N} \equiv N$

Distickstoffoxide

Azomethinimine

Nitrone

Carbonyloxide
En-Reaktion

En-Reaktion (Alder)

2 + 2 Cycloadditionen

[2+2] - Cycloadditionen und -reversionen

Thermische [2 + 2] - Cycloadditionen

Cycloadditionen - Verallgemeinerung

Thermische Grundzustandsreaktionen

(Hückel-aromatischer TS)

 $m_a + n_s = 4q$ (Möbius-aromatischer TS)

 $\frac{Woodward - Hoffmann - Regeln}{[m + n] - Cycloadditionen}$ $\frac{Zahl der e^{-} \qquad \qquad \begin{array}{c} [m + n] - Cycloadditionen \\ thermische \\ Reaktion \end{array} photochemische \\ \hline \begin{array}{c} Reaktion \\ \hline \end{array} \\ 4q + 2 \\ 4q \end{array} \qquad \qquad \begin{array}{c} \underline{m_s + n_s} \\ \underline{m_s + n_s} \\ m_s + n_a \\ m_s + n_s \end{array}$

Beispiele für elektrocyclische Umlagerungen

Regeln für elektrocyclische Reaktionen

Elektrocyclische Reaktionen

- intramolekular
- unkatalysiert
- neue Position der σ -Bindung
- Umorganisation der π -Bindungen

Sigmatrope H-Wanderungen

Sigmatrope H-Wanderungen

[3.3]-Sigmatrope Umlagerungen (Cope-Umlagerung)

[3.3]-Sigmatrope Umlagerungen (Cope-, Claisen-)

cis-Divinylcyclopropan

Valenztautomerie

Bicyclo[5.1.0]octadien

C₁₀H₁₀ Bullvalen

1 209 600 Valenztautomere

bei 100°C ein NMR-Signal

Woodward-Hoffmann-Regeln

Zahl der Elektronen	thermisch	photochemisch
1. [m + n] – Cycloadditionen und –reversionen		
4q + 2	m _s + n _s (Hückel)	$m_s + n_a$
4q	$m_s + n_a$ (Möbius)	$m_s + n_s$
2. Elektrocyclische Reaktionen		
4q + 2	suprafacial disrotatorisch	antarafacial konrotatorisch
4q	antarafacial	suprafacial
3. [i, j] – Sigmatrope Wanderungen		
4q + 2	suprafacial	-
4q	antarafacial	-
q = 0, 1, 2		

Vitamin D₂-Synthese

Eliminierungen: 1. β-Eliminierungen

 $E2 (A_n D_E D_N)$

Stereochemie: anti-Eliminierung Stereochemie des Produkts: Curtin-Hammett-Prinzip

Curtin-Hammett-Prinzip

Bei einer kinetisch kontrollierten stereoselektiven Reaktion wird die Selektivität ausschließlich durch die Differenz der Freien Aktivierungsenthalpien der diastereomeren TS bestimmt und nicht durch $\Delta\Delta G^0$ der Konformationen des Grundzustands.

2. Dihalogeneliminierungen

3. Thermische Eliminierungen

Chugaev-Reaktion

3. Thermische Eliminierungen

Cope-Eliminierung

 $H_3C(CH_2)_5CHO + H_2C=CH(CH_2)_8COOMe$

4. Cheletrope Reaktionen

4q + 2 (q = 1) Δ : suprafacial hv: antarafacial

5. Extrusionen

Norrish-TypI-Spaltung

5. Extrusionen

Hydrierung

Hydrierung

Wilkinson-Hydrierung:

Carbonylierungen

Heck-Reaktionen

R = Ar, Alkenyl, Benzyl X = Br, I, CF_3CO_2 , u.a.

Heck-Reaktionen

Heck-Reaktionen

Totalsynthese von 17 β-Östradiol

Totalsynthese von enantiomerenreinem 17 β -Östradiol durch zweifache Heck-Reaktion nach Tietze.

Kalottenmodell von [{(Ar)(tBu)N}₃MoCl]

Das Kalottenmodell von [{(Ar)(tBu)N}₃MoCl], einem neuartigen Katalysator für die Ringschlussmetathese von Alkinen, ist umgeben von Strukturformeln einiger Naturstoffe, bei deren Synthese diese Methode eingesetzt wurde.

Olefin-Metathese

Wichtige Arten von Metathesereaktionen

RCM: Ringschlussmetathese (ring closing metathesis)

ADMET: acyclische Dienmetathese-Polymerisation (acyclic diene metathesis polymerization)

ROMP: Ringöffnungsmetathese-Polymerisation (ring opening metathesis polymerization)

$$R^{1} \xrightarrow{\qquad R^{2} \qquad CM} \xrightarrow{\qquad CM} \xrightarrow{\qquad R^{2} \qquad R^{2}} \left\{ \begin{array}{c} R^{1} \qquad R^{2} \\ R^{1} \qquad R^{2} \end{array} \right\}$$

CM: Kreuzmetathese (cross metathesis)
Metathesereaktionen

Metathesekatalysatoren und -katalysatorvorstufen

Katalysekreislauf der RCM

Olefin-Metathese

RCM mit einem Grubbs-Katalysator

Synthese eines Metathesekatalysators

Struktur eines Grubbs-Metathesekatalysators

Metathese acyclischer Alkene mit Grubbs-Katalysator

P. Schwab, M.B. France, J.W. Ziller, <u>R.H. Grubbs</u>, *Angew. Chem.* **1995**, *107*, 2179-2181

Tebbe-Reaktionen

Tebbe-Reaktionen

Pauson-Khand-Reaktion

Pauson-Khand-Reaktion

Synthese von Fenestran

