Der Einfluß polarer und sterischer Effekte auf die Selektivität der β-Spaltung von Alkyl-Radikalen**

Von Kurt Klenke, Jürgen O. Metzger* und Stefan Lübbers

Die Ergebnisse (Tabelle 1) sind in mehrfacher Hinsicht bemerkenswert. Das Benzyl-Radikal 2b fragmentiert langsamer als das Methoxyacylalkyl-Radikal 2a, da 2b

\[
\begin{align*}
\text{Me} & \quad \text{Et-CH} = \text{CH}_2 + \text{c-C}_7\text{H}_8^+ \\
1 & \quad X \\
\text{Me} & \quad \text{Et-CH} = \text{CH}_2 - (\text{c-C}_7\text{H}_8^+), \\
2 & \quad X \\
\text{CH}_2 - (\text{c-C}_7\text{H}_8^+) & \quad \text{Me-CH} = \text{CO}, \\
3 & \quad X \\
& \quad \text{Me-CH} = \text{CO}, \\
4 & \quad X \\
a, X = \text{COOMe}; & b, X = \text{Ph}; c, X = \text{p-MeO-C}_6\text{H}_4^+; \\
d, X = \text{p-Cl-C}_6\text{H}_4^+.
\end{align*}
\]

Tabelle 1: β-Spaltung der Radikale 2 zu den Produkten 3 und 4 bei 350°C [3].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a 14.7 17.8 (1.22) 3</td>
<td>-18.2 ± 0.1 0.6 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b 6.0 7.3 (0.86) 2.5</td>
<td>-4.5 ± 0.5 3.0 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c 7.4 8.9 (0.95) 2.1</td>
<td>-8.6 ± 0.6 1.6 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d 9.0 9.4 (0.97) 2.3</td>
<td>-7.2 ± 0.8 2.4 ± 0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Summe der β-Spaltungsprodukte 3 und 4 bezogen auf eingesetztes Alken 1. [b] In Klamern: Selektivität 5 = log((4)/(3)). [c] ΔEᵣ = Eᵣ(4) - Eᵣ(3); 300-450°C.

[*] Priv.-Doz. Dr. J. O. Metzger, Dr. K. Klenke, Dipl-Chem. S. Lübbers, Fachbereich Chemie der Universität Crefeld-Ostheim-Strasse 9-11, D-3900 Oldenburg

[**] Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft gefördert.

Geringere aber signifikante Effekte sind beim Vergleich der Fragmentierung der Radikale 2b, 2c und 2d festzustellen (Tabelle 1). Der Elektronenzug von Chlor in 2d erhöht die Reaktivität und die Selektivität im Vergleich zu 2b. Be- merkenswert ist, daß die p-Methoxycarbonylgruppe in 2c offensichtlich nur durch ihren – I-Effekt wirkt. Die Selektivität der Ethyl-Methyl-Abspaltung wird im Vergleich zu 2b signifikant erhöht. Das ist nur verständlich, wenn die p-Methoxycarbonylgruppe einen elektronenziehenden Effekt ausübt.

Durch die Addition von Cyclohexyl-Radikalen an die Alkene 5 wurden die Radikale 6 erhalten. Diese fragmentieren in einer Konkurrenzreaktion zu den Produkten 7 und 8 sowie zu einem Methyl-Radikal. Aus dem Verhältnis 7:8 kann der relative Effekt der Substituenten am Kohlenstoffatom, an dem die C-C-Bindung gespalten wird, auf die Abspaltung des Methyl-Radikals bestimmt werden.

Die Fragmentierung ist bemerkenswert selektiv (Tabelle 2): Das thermodynamisch stablere Alken 7 wird bei 400°C in nur geringem Überschuß gebildet. Normiert auf die Zahl der abspaltbaren Methylgruppen wird das Methyl-Radikal sogar bevorzugt von der niedriger substituierten Alken-10 Alkylgruppe zum thermodynamisch instabilere Alken 8 abgespalten.

Tabelle 2. Selektivität der β-Spaltung der Radikale 6 bei 400°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>77</td>
<td>43</td>
<td>2,3</td>
<td>0,36</td>
</tr>
<tr>
<td>b</td>
<td>52</td>
<td>40 [c]</td>
<td>1,4</td>
<td>0,15</td>
</tr>
<tr>
<td>c</td>
<td>42 [d]</td>
<td>38</td>
<td>1,2</td>
<td>0,06</td>
</tr>
</tbody>
</table>

[a] Relative Geschwindigkeit normiert auf eine Methylgruppe. [b] S = [A]/[B], [c] [E]- und [Z]-Produkte.

Auf den ersten Blick ist dieses Ergebnis überraschend. Man könnte erwarten, daß mit hoher Selektivität das stablere Alken gebildet wird und daß die Abspaltung des Methyl-Radikals bevorzugt von der höher substituierten Alkylgruppe erfolgt. Das Ergebnis wird verständlich, wenn die β-Spaltung von der Seite der Addition betrachtet wird (Abb. 1). Substituenten am angegriffenen C-Atom behin- dern durch ihren sterischen Effekt die Addition.11 Die freie Aktivierungsenthalpie für die Addition des Methyl-Radikals an das Alken 7 wird durch die größere Zahl an Methylgruppen am angegriffenen C-Atom im Vergleich zum Alken 8 angehoben. Das bedeutet, daß auch der Übergangszustand der β-Spaltung entsprechend angehoben und die Reaktion verlangsamt wird.12

Abb. 1. Reaktionskoordinate der β-Spaltung von Radikal 6a.

[9] 0.01 mol/L des Alkenes 5 in Cyclohexan wurde bei 350–450°C und 200 bar 20 min wie unter [3] beschrieben umgesetzt. Der Umsatz betrug maximal 4 Mol-%.

